Photo Couplers Panasonic

CND0208A

Infrared Optocal Module (IrDA)

Infrared data link for cellular phones, peripheral devices

■ Features

- Compliant with IrDA Ver.1.2
- Reception distance: 50 cm
- Corresponding reflow solder (260°C)
- Ultra-small top view package (2.0 mm \times 7.2 mm \times 1.7 mm)

■ Type

• GaAlAs LED + IC + PIN Photodiode

■ Absolute Maximum Ratings $T_a = 25$ °C±3°C

Parameter	Symbol	Rating	Unit	
Operating supply voltage	V _{CC}	-0.5 to +3.8	V	
Output voltage	Vo	-0.5 to $+3.8$	V	
Input voltage	$V_{\rm I}$	-0.5 to $+3.8$	V	
Shutdown input voltage	V_{SD}	-0.5 to $+3.8$	V	
LED operating supply voltage	V_{LEDA}	-0.5 to $+7.0$	V	
Pulse forward current *	I_{FP}	300	mA	
Low level output current	I_{OL}	10	mA	
Operating ambient temperature	T _{opr}	-20 to +70	°C	
Storage temperature	T _{stg}	-30 to +85	°C	

Note) *: $tw \le 90 \mu s$, $Duty \le 25 \%$

■ Operation Condition

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating supply voltage	V _{CC}		2.4	2.8	3.3	V
LED operating supply voltage	V_{LEDA}		2.6		4.2	V

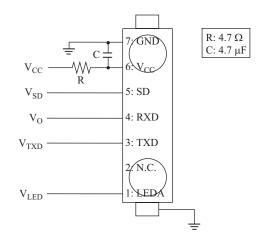
■ Electrical-Optical Characteristics $V_{CC} = 2.8 \text{ V}, T_a = 25 \text{°C} \pm 3 \text{°C}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
High level supply current *1	I_{CCH}	$V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$		90	120	μΑ
Low level supply current *1	I_{CCL}	$V_{TXD} = 0.5 \text{ V}, V_{SD} \le 0.5 \text{ V}$		150	360	μΑ
Shut down supply current *1	I _{CCSD}	$V_{CC} \ge V_{SD} \ge V_{CC} - 0.3 \text{ (SD = High)}$ $V_{TXD} = 0.5 \text{ V}$		10	200	nA
Maximum reception distance *4	L _{max}	$V_{LED} = V_{CC} = 2.6 \text{ V}, V_{SD} \le 0.5 \text{ V},$ External components	50			cm
Data Rates	_		9.6		115.2	kbps

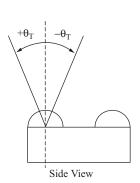
CND0208A Panasonic

\blacksquare Electrical-Optical Characteristics (Continued) V_{CC} = 2.8 V, T_a = 25°C±3°C

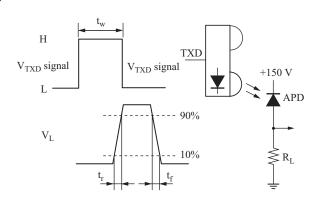
Parameter		Symbol	Conditions	Min	Тур	Max	Unit
Transmitter							
Peak emission wavelength *1		$\lambda_{ m P}$	$V_{SD} \le 0.5 \text{ V}, V_{LED} = 3.2 \text{ V Duty } 3/16$	878	883	888	nm
			$V_{SD} \le 0.5 \text{ V}, V_{LED} = 3.2 \text{ V Duty } 3/16$ $T_a = -20^{\circ}\text{C to } +70^{\circ}\text{C}$	850	883	900	nm
Pulse forward current *1		I_{FP}	$V_{LED} = V_{CC} = 3.1 \text{ V}, V_{SD} \le 0.5 \text{ V}$ TXD Duty 3/16	100	135	150	mA
Center radiant intensity *1, 2, 9	$\theta_T = 0$	I _e	$V_{LED} = V_{CC} = 2.6 \text{ V}, V_{SD} \le 0.5 \text{ V}$ TXD Duty 3/16	20	35		mW/sr
	$\theta_{\rm T} = \pm 15$	I _{e15}	$V_{LED} = V_{CC} = 2.6 \text{ V}, V_{SD} \le 0.5 \text{ V}$ TXD Duty 3/16	14.5			mW/sr
High level input voltage *1		V_{IH}	$V_{LED} = 3.2 V$	$V_{CC} - 0.3$		V _{CC}	V
Low level input voltage *1		$V_{\rm IL}$	$V_{LED} = 3.2 V$	0		0.5	V
TX half-angle		θ_{T}		±15			0
Rise time *1,3		t _r	$V_{LED} = 3.2 \text{ V}, t_w = 1.6 \mu\text{s}, R_L = 50 \Omega$		0.3	0.6	μs
Fall time *1,3		t_{f}	$V_{LED} = 3.2 \text{ V}, t_w = 1.6 \mu\text{s}, R_L = 50 \Omega$		0.3	0.6	μs
TX wake up time *7		t _{Twu}			0.3	1	μs
Intensity delay time *1,3		I _{DT}	$V_{LED} = 3.2 \text{ V}$			200	ns
Maximum pulse width		T _{wLEDmax}	$TXD = Low \rightarrow High$	20	50	100	μs
Overshoot		O_S				25	%
Edge jitter		E_{J}		-40		40	ns
Receiver							
Minimum input irradiance		E _{I min}	$V_{LED} = V_{CC} = 2.6 \text{ V}, V_{SD} \le 0.5 \text{ V}$			5.8	μW/cm ²
Maximum input irradiance		E _{I max}	$V_{SD} \le 0.5 \text{ V}$	500			mW/cm ²
High level output voltage *5		V _{OH}	Non signal condition $I_{OH} = -200~\mu A, V_{SD} \leq 0.5~V$	V _{CC} -0.3		V _{CC}	V
Low level output voltage *6		V _{OL}	$I_{OL} = 500 \mu\text{A}, V_{SD} \le 0.5 \text{V}$	0		0.5	V
RX half angle		θ_{R}		±15			0
RXD output pulse width		T _{WR}	$C_L = 15 \text{ pF}, 9.6 \text{ kbps to } 115.2 \text{ kbps}$	1.0	2.3	4.2	μs
RX wake up time *8		t _{Rwu}	$E_I = 8.1 \ \mu \text{W/cm}^2$		200	400	μs
Receiver latency time		$t_{ m L}$	$E_I = 8.1 \mu\text{W/cm}^2$		100	200	μs
Rise time		t _r	$C_L = 15 \text{ pF}$			300	ns
Fall time		t_{f}	$C_L = 15 \text{ pF}$			300	ns

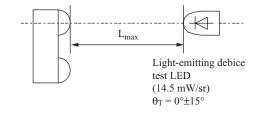

2 SHF00009AEK

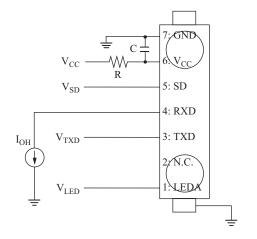
Panasonic CND0208A

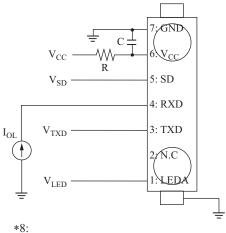

■ Electrical-Optical Characteristics (Continued)

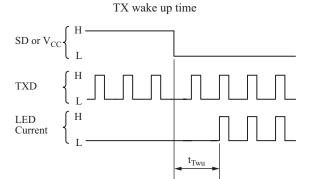
Note) Measuring circuit

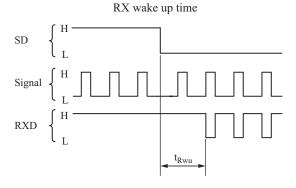

*1:


*2:


*3:

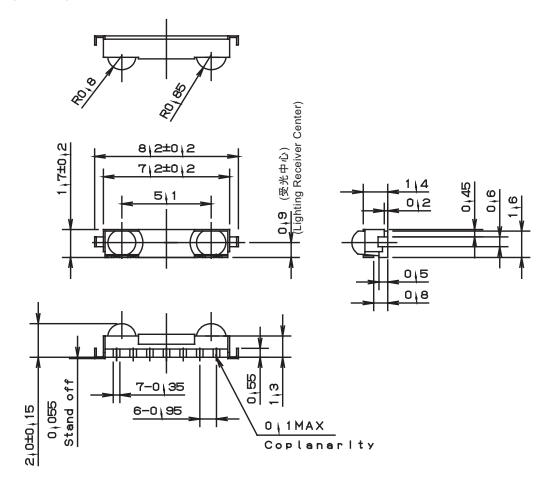

*4:

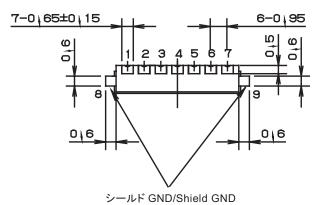

*5:



*6:

*7:




*9: Eye-Safety IEC60825-1 Class1 Eye safe

3 SHF00009AEK

CND0208A Panasonic

■ Package (Unit: mm)

• Pin name

1. LEDA 6. V_{CC}

2. N.C. 7. GND

3. TXD 8. Shield GND

4. RXD 9. Shield GND

5. SD

■ This product contains Gallium Arsenide (GaAs).

GaAs powder and vapor are hazardous to human health if inhaled or ingested. Do not burn, destroy, cut, cleave off, or chemically dissolve the product. Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

If you have any inquiries or questions about this book or our semiconductor products, please contact one of our sales offices listed on the back or Semiconductor Company's Department.